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Figure 1: Semantic hearing applications. a) Users wearing binaural headsets can attend to speech while blocking out only the 
vacuum cleaner noise, b) block out street chatter and focus on the sounds of birds chirping, c) block out construction noise yet 
hear car honks, and d) a meditating user could use headsets to block out trafc noise outside yet hear alarm clock sounds. 

ABSTRACT 
Imagine being able to listen to the birds chirping in a park without 
hearing the chatter from other hikers, or being able to block out 
trafc noise on a busy street while still being able to hear emer-
gency sirens and car honks. We introduce semantic hearing, a novel 
capability for hearable devices that enables them to, in real-time, 
focus on, or ignore, specifc sounds from real-world environments, 
while also preserving the spatial cues. To achieve this, we make two 
technical contributions: 1) we present the frst neural network that 
can achieve binaural target sound extraction in the presence of in-
terfering sounds and background noise, and 2) we design a training 
methodology that allows our system to generalize to real-world use. 
Results show that our system can operate with 20 sound classes 
and that our transformer-based network has a runtime of 6.56 ms 
on a connected smartphone. In-the-wild evaluation with partici-
pants in previously unseen indoor and outdoor scenarios shows 
that our proof-of-concept system can extract the target sounds and 
generalize to preserve the spatial cues in its binaural output. 
Project page with code: https://semantichearing.cs.washington.edu 
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1 INTRODUCTION 
Over the past decade, we have witnessed an increase in the num-
ber of hearable devices like headsets, and earbuds, with millions 
of people using them worldwide [50]. Here, we introduce a new 
capability for hearable devices, which we call “semantic hearing". 

Consider a scenario where a user is wearing ear-worn devices 
on a beach and desires to listen to the calming sounds of the ocean 
while blocking out any human speech nearby. Similarly, while walk-
ing on a busy street, the user may wish to reduce all sounds except 
for emergency sirens; or while sleeping, they may want to listen to 
the alarm clock or baby sounds but not the noise from the street. In 
another scenario, the user may be on a plane and desire to hear hu-
man speech and announcements but not the sound of a crying baby. 
Or while hiking, the user may want to listen to the birds chirping 
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Figure 2: Semantic hearing architecture. The binaural input 
sounds are captured at a wired noise-canceling headset and 
sent to a phone, where we run on our sound extraction net-
work. This extracts the binaural output that captures the 
target sounds (e.g., sirens and cat sounds) and suppresses 
noise and interfering sounds (e.g., vacuum and trafc noise). 
This binaural output is played back in real-time. 

but not the chatter from other hikers (see examples in Fig. 1). These 
and other potential use cases require noise-canceling earphones 
for canceling all the sounds and then a mechanism for introducing 
back the desired sounds into the earphones. The latter, which is the 
focus of our work, requires programming the output acoustic scene 
in real-time by semantically associating the individual incoming 
sounds with user input to determine which sounds to allow in the 
hearable device and which sounds to block. 

Animals have evolved over millions of years to focus on tar-
get sounds and the associated directions [32]. However, achieving 
this capability with in-ear devices like earphones and headsets is 
challenging for three key reasons. 
• Real-time requirements. The sounds output by our design should 
be synced with the user’s visual senses. This requires real-time 
processing that satisfes stringent latency requirements. Research 
on medical hearing aids and augmented audio shows that we need 
a latency of less than 20-50 ms [24, 59]. This requires identifying 
the target sounds using 10 ms or less of audio blocks, separating 
them from interfering sounds, and then playing them back, all on a 
computationally-constrained device like a smartphone. 
• Binaural processing. Sounds arrive at the two ears with diferent 
delays and attenuations [64]. The physical separation between the 
two ears and the refections/difraction from the wearer’s head, 
i.e., the head-related transfer function, provide cues for spatial 
perception. To preserve these cues, we need a binaural output to 
preserve or recover this spatial information for the target sounds 
across the two ears. 
• Real-world generalization. While training and testing a neural 
network on synthetic data is common in audio machine learning 
research, designing a binaural target sound extraction network 
that generalizes to real-world hearable applications is challenging. 

(a) Binaural input of emergency siren, chatter, and trafc noise. 
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(b) Binaural output with siren extracted. 
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(c) Binaural input of birds chirping, chatter, and street noise. 
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(d) Binaural output with birds chirping extracted. 

Figure 3: Real-world binaural input and output recordings 
obtained with our semantic hearing system. 

This is because it is difcult to fully capture the complexity of real-
world reverberations and head-related transfer functions (HRTFs) 
in simulations. We however require generalization to in-the-wild 
use in unseen acoustic environments across diferent users. 

In this paper, we address the above challenges and demonstrate 
semantic hearing1 with hearable devices. To achieve our goal, we 
make two key technical contributions. We design the frst neural 
network capable of achieving binaural target sound extraction. 
Our network takes the two audio signals from the microphones 
at the two ears as binaural input and outputs two audio signals as 
binaural output, while preserving the directionality of the target 
sounds in the acoustic scene. To do this, we start with our recent 
single-channel (not binaural) transformer model for target sound 
extraction [66], which had neither real-world evaluation nor real-
time smartphone operation. First, we optimize the network for real-
time operations on smartphones. Then, we design a network that 
jointly processes the binaural input signals, allowing it to preserve 
the spatial information about the target sounds and output binaural 
audio (see §3.2). This joint processing is more efective at binaural 
target sound extraction and has half the computational cost of 
processing the binaural input signals separately. 

We also design a training methodology that ensures our binaural 
network can generalize to real-world situations, such as reverbera-
tions, multipath, and HRTFs. Obtaining training data in fully natural 
environments can be difcult because we may capture mixtures but 
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1Our inspiration for the name ‘semantic hearing’ is directional hearing which is the 
ability to hear sounds from a specifc direction [10, 16, 67]. Similarly, semantic hearing 
is the ability to hear the sounds that are specifed by some semantic descriptions, such 
as sound classes. 
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lack access to the ground truth sounds needed for supervised learn-
ing. Moreover, training a network that can generalize to in-the-wild 
use with hearables requires that the training data capture reverber-
ations, multipath, and head-related transfer functions across a large 
number of users. To achieve this, we synthesize our training data us-
ing multiple datasets. First, we use an HRTF dataset, which includes 
measurements from 41 users in non-reverberant environments. We 
convolve the room impulse responses with thousands of examples 
from 20 diferent audio classes to generate both our mixtures and 
the ground truth binaural audio. However, this does not capture 
the reverb and multipath in realistic environments. Therefore, we 
augment these synthesized mixtures with training data synthesized 
from three diferent datasets that provide binaural room impulse 
responses captured in real rooms. This facilitates our network to 
generalize to users and real-world environments that are not in the 
training dataset. 

To demonstrate proof-of-concept, we augmented an of-the-shelf 
noise-canceling headset with commercial wired binaural earphones 
that provide access to data from both microphones. We implement 
our neural network on a connected smartphone and train it with 20 
diferent sound classes, including sirens, baby cries, speech, vacuum 
cleaners, alarm clocks, and bird chirps. Our results are as follows. 
• We achieve an average signal improvement of 7.17 dB across the 
20 target sounds, in the presence of interfering sounds and urban 
background noise. Our real-time network has a 6.56 ms runtime on 
iPhone 11 for processing a 10 ms chunk of binaural audio. 
• In-the-wild evaluation with participants in various indoor and 
outdoor scenarios with our hardware shows that our system can 
extract the target sounds (Fig. 3) and generalize to previously unseen 
participants, and environments, without requiring any training data 
collection with our hearable hardware. 
• In a spatial hearing study where we played sounds from diferent 
directions in fve previously unseen rooms, participants were able 
to predict the direction of the target sounds output by our system 
with 50th and 90th percentile errors of 22.5◦ and 45◦ respectively. 
These errors were similar for noise-free clean sounds. 
• In a user study with 22 participants who spent over 330 min-
utes rating binaural data from real-world indoor and outdoor envi-
ronments, our system achieved a higher mean opinion score and 
interference removal for the target sounds than the binaural input. 

Contributions. We introduce the concept of semantic hearing, 
where we can program the binaural acoustic scene based on seman-
tic sound descriptions. Our work makes fve key contributions. 1) 
we present the frst neural network to achieve binaural target sound 
separation and demonstrate that our network can run in real-time 
on smartphones, 2) we design a training methodology to gener-
alize our system to unseen real-world environments, and users, 
3) we implement a proof-of-concept with of-the-shelf hardware 
and show that our system achieves the above goals in real-world 
environments, 4) we highlight where our current system fails and 
opportunities for future research, and 5) by making our binaural 
models and datasets public, we hope to kickstart future research in 
the community towards further developing the concept of semantic 
hearing in practical hearable applications. 
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Figure 4: Noise reduction achieved with Sony WH-1000XM4 
headphones – with and without active noise cancellation 
turned on – measured using an in-ear microphone inside 
the headphone cup. The reduction is measured relative to a 
microphone recording outside the ear cup. The spuriously 
large values at low frequencies (< 100 Hz) are due to the in-ear 
microphones picking up the wearer’s blood pulse. 

2 BACKGROUND AND RELATED WORK 
Over the last decade, noise-canceling headsets and earbuds have 
undergone signifcant improvements, which now allow for more 
efective attenuation of all sounds in the environment. In fact, our 
experiments, where we play white noise to a human subject wear-
ing a pair of Sony WH-1000XM4 headphones, show the impressive 
attenuation capabilities of these modern systems (Fig. 4). We iden-
tify this as an opportunity that provides us with an acoustic clean 
slate to introduce back target binaural sounds of interest from the 
environment. To the best of our knowledge, none of the prior work 
has explored semantic hearing capabilities for hearables. In the rest 
of this section, we describe related work in hearable systems, signal 
processing and machine learning for audio, and interaction tools. 

Active noise cancellation and acoustic transparency. Active 
noise cancellation is a well-studied problem where outward-facing 
microphones are used to capture sounds [58]. An anti-noise signal 
is then transmitted to cancel all the external sounds and noise, 
which has more stringent delay requirements than semantic hearing. 
Traditional noise cancellation systems required bulky headsets. 
However in recent years lightweight in-ear earbud systems like 
the AirPods Pro can achieve reasonable noise-cancellation in many 
practical scenarios [1]. Semantic hearing leverages noise-cancelling 
earphones to cancel all sounds and then uses the mechanisms in 
this paper to program acoustic scenes in real-time. 

The acoustic transparency mode for in-ear devices tries to imi-
tate the sound response of an open-ear system by transmitting the 
appropriate signals into the ear canal [31]. Like active noise cancel-
lation, this is agnostic to the sound classes. Adaptive transparency 
on Apple airpods is designed to automatically reduce the amplitude 
of loud sounds [3]. While related, this does not allow the user to 
pick and choose which sound classes to hear. 

Speech systems. Prior systems have predominantly focused 
on improving the performance of speech-related tasks for in-ear 
devices (e.g., Airpods), telephony (e.g., Microsoft Teams), and voice 
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Figure 5: System requirements. Diferent components that 
contribute to latency in binaural target sound extraction. 

assistants (e.g., Google Home). This includes speech enhance-
ment [14, 41], target speech extraction [17, 22], and speech sepa-
ration [37, 60]. Oftentimes, these systems collectively regard all 
non-speech sounds just as noise. In contrast, semantic hearing re-
quires understanding the semantics of various natural and artifcial 
sounds in real-time, in the presence of interfering sounds, and de-
termining which sounds to allow and which to block, based on 
user input. Speech is one amongst many other sound classes in our 
system. 

Neural networks for target sound extraction. Target sound 
extraction is the task of separating one or a limited number of target 
sounds from a mixture of sounds. Compared with speech systems, 
this is an underexplored problem in the audio machine learning 
community. However recent works have proposed neural networks 
that can achieve target sound extraction where clues about the 
target sound are provided either via audio [15, 21], images [19, 69], 
text [33, 35], onomatopoeic words [46], or a one-hot vectors [45]. 
All these models are designed for ofine processing of audio clips, 
where the neural network has access to the entire audio fle (≥ 1 s) 
and hence cannot support our real-time hearable use-case. 

The closest related work is our recent research on Waveformer 
[66], which introduces a neural network architecture for target 
sound extraction. Waveformer was shown to run in real-time on a 
desktop computer. Our work difers from [66] in two important di-
mensions. First, Waveformer is a single-channel model that operates 
on a single microphone. In contrast, our target use-case requires 
binaural processing across the two ears. As we show in §4.4, run-
ning the prior model independently on the two microphones is 
computationally expensive, failing to meet the real-time require-
ments on a smartphone. Second, all prior work in this domain was 
evaluated on synthetic datasets and has not been demonstrated on 
hardware in real-world scenarios. In contrast, we present the frst 
binaural target sound extraction system that can run in real-time 
on smartphones. We designed a training methodology that allows 
our system to generalize to unseen indoor and outdoor real-world 
environments. 

Hearable applications. Recent work has used in-ear sensors 
for health applications [11–13] and activity tracking [39, 52]. Prior 
work has also explored various interaction modalities like ultra-
sound sensing [68] and on-face interaction [70] for in-ear devices. 
The closest to our work is Clearbuds [14], which focuses on the task 
of enhancing the speech of the wearer using synchronized audio 

signals from two wireless earbuds. This prior work is focused on 
speech enhancement and is complementary to our system. Further, 
since the target application for [14] is telephony, it uses a 44.8 ms 
lookahead and has a latency of 109 ms. 

Audio-based tools. Prior work has explored the use of sounds 
to perform activity recognition for wearables and smart home appli-
cations [28, 29, 34, 36, 43, 63, 71]. These systems operate on around 
1s audio chunks as the target use cases do not have the O(10 ms) 
latency requirements of in-ear audio applications. Prior work has 
also designed interaction tools for audio editing [49, 55]. Our work 
is complementary in that it is focused on in-ear audio applications 
and semantic hearing that has more stringent latency requirements. 

3 SEMANTIC HEARING 
We frst describe our system requirements and then present the 
network architecture we use for real-time binaural target sound 
extraction on smartphones. Next, we present our training method-
ology that generalizes our design to real-world use. 

3.1 System Requirements 
The goal of our design is to program the acoustic environment 
with imperceptible latency such that the target sound of interest 
is present but all other interfering sounds are suppressed. Given 
the stringent latency constraints, we cannot perform the necessary 
computation in the cloud but have to operate in real-time using 
computationally constrained devices like smartphones. Further, 
the target sounds generated by the model must originate from the 
same spatial directions as the real-world target sounds. Thus, our 
design must meet two key requirements: 1) real-time low-latency 
operation, and 2) binaural real-world generalization. 
Real-time low-latency operation. Fig. 5 shows the diferent compo-
nents that contribute to end-to-end latency in binaural acoustic 
processing systems. The frst step is to feed the sound signals into 
two memory bufers of the binaural microphones. The acoustic 
data from the two microphones in each block is then fed into our 
neural network that outputs a block-length worth of binaural target 
sound data. This binaural output is then played back through the 
two speakers on the headset. 

To ensure that the audio played through the headset is synced 
with the user’s visual senses, we need this end-to-end latency to be 
less than 20-50 ms [24, 59, 67]. To achieve this, we need to reduce the 
bufer duration, the look-ahead duration and the processing time. 
This is challenging for multiple reasons. 1) A small bufer duration 
of say 10 ms means that the algorithm has only an 10 ms block of 
current data to not only understand the semantics of the acoustic 
scene but also separate the target sound from other interfering 
sounds. While we can use the acoustic signals that arrived prior to 
the current block, many of our target sounds (e.g., door knocks) are 
not continuous. Reducing the bufer size even further to say 2 ms 
can be challenging from an operating system perspective since it 
can increase the number of system calls. 2) While a large looka-
head can provide more context for the neural network to extract 
the target sounds, meeting our end-to-end latency requirement 
reduces the leeway we have in terms of the available lookahead to 
a few milliseconds. 3) Real-time operation requires processing each 
acoustic block within the duration of the block itself. This means 
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that it should take less than 10 ms to process a 10 ms bufer [67]. 
This can be challenging since neural networks are not known for 
their lightweight computation. Further, since we cannot send the 
data to the cloud, the processing must be performed on-device on 
computationally-constrained devices like smartphones. In addition 
to all the above constraints, the operating systems also has I/O 
delays which for audio on iOS is on the order of 4 ms, depending 
on the bufer size [2]. 
Binaural real-world generalization. In real life, the target sounds 
experience reverberations and multipath propagation due to refec-
tions from walls and other objects in the environment. Further, the 
human head and torso refect and obstruct sounds. As a result the 
target sound arrives with diferent amplitudes and delays at the 
two ears. The diferences in the received sounds across the two 
ears provide spatial awareness to humans. Thus, it is critical in our 
design to preserve these diferences and play the target sounds with 
diferent amplitudes and delays through the two speakers of the 
headset. This is challenging since the target and interfering sounds 
can be at diferent positions and experience diferent reverberations 
and refections from the head-related transfer function. Further, the 
multipath efects and reverberations are difcult to predict in real-
world environments, let alone the fact that the head-related transfer 
functions can change across wearers. 

3.2 Binaural target sound extraction network 
We frst explain the high-level framework for our binaural target 
sound extraction neural network. Then we explain the causal and 
streaming adaptation of this network. Finally, we provide a detailed 
description of the network architecture. 

3.2.1 High-level framework. Consider � ∈ �2×� to be the input 
binaural signal provided to the target sound extraction network. 
Since time-domain models also have been shown to be able to 
learn representations analogous to STFT features [38], our network 
operates on time-domain binaural signals. As shown in Fig. 6a, 
the signal is frst mapped to a representation in a latent space, 
� ∈ �� ×(� /�) , by using a 1D convolution layer with a kernel size ≥ 
� and a stride equal to �. � and � are tuneable hyperparameters of 
the model. � is the dimensionality of the model, having a signifcant 
efect on the parameter count, and consequently the computational 
and memory complexities. � determines the duration of the smallest 
audio chunk that can be processed with the model. The latent space 
representation � , is then passed to a mask generator, M, which 
estimates an element-wise mask � as: 

� = M(�, �) | � ∈ �� ×(� /�) ; � ∈ {0, 1}�� , (1) 

where �� is the total number of sound classes the model is trained 
for. The representation corresponding to the target sound is ob-
tained by element-wise multiplication of the input representation, 
� , and the mask, �, as follows: 

� = � ⊙ � | � ∈ �� ×(� /� ) . (2) 

The output audio signal �̂  ∈ �2×� is then obtained by applying a 
1D transposed convolution on �, with a stride of �. 

In contrast to more complex binaural extraction frameworks 
proposed specifcally for speech, where each channel is separately 
and parallely processed [23, 25], our design jointly processes the 
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two channels for computational efciency. In our experiments, we 
show that our simpler framework performs competitively with 
the prior parallel processing frameworks in terms of target sound 
extraction accuracy, even with a 50% lower runtime cost. 

3.2.2 Streaming inference and causality. For real-time on-device 
operation, the model must output the audio corresponding to the 
target sound as soon as the input audio is received, i.e., within 
the latency requirements detailed in §3.1. Since the audio is fed 
to the model from the device bufers, the bufer size determines 
the duration of the audio chunk the model receives at each time 
step. Assuming the bufer size to be divisible by the stride size �, 
the audio chunk size can be represented as the number of strides, 
� . That is, the bufer size of an audio chunk of size � is equal to 
�� samples. Such a real-time setup means that the model only has 
access to the current and previous chunks, but not future chunks. 
This requires the model to be causal with the time resolution of the 
bufer size, i.e., �� audio samples. As a result, in the high-level frame-
work described above, the input convolution, the mask estimation 
block, the element-wise multiplication, and the output transposed 
convolution must operate on one audio chunk at each time step. 

The binaural target sound extraction framework described in 
§3.2.1 can be adapted to chunk-wise streaming inference as follows. 
Consider the input audio signal corresponding to the �th chunk to 
be �� ∈ �2×�� . The input 1D convolution maps this audio chunk 
to its latent space representation, �� ∈ �� ×� . The mask estimation 
block is then used to estimate the mask corresponding to the target 
sound, based on the current chunk, as well as a fnite number of 
the previous chunks: 

�� = M(�� , �, �� −1, �� −2, ...) | �� ∈ �� ×� . (3) 

The previous chunks act as the audio context for the neural network, 
referred to as the receptive feld of the model. A receptive feld of 
1-1.5s is shown to result in good performance [38]. The output 
representation of the current chunk corresponding to the target 
sound, �� ∈ �� ×� can then be obtained as: 

�� = �� ⊙ �� . (4) 

The resulting output representation is then converted to the output 
signal �̂� ∈ �2��� by applying the 1D transposed convolution. 

3.2.3 Mask estimation network. Several architectures have been 
proposed in the literature for mask estimation such as Conv-TasNet 
[38], U-Net [30], SepFormer [60], ReSepFormer [61], and Wave-
former [66]. Waveformer is an recently proposed efcient streaming 
architecture implementing chunk-based processing, which makes it 
suitable for our task. In this work, we propose a modifed version of 
Waveformer to further increase efciency without any loss in perfor-
mance. The mask estimation network is an encoder-decoder neural 
network architecture, where the encoder is purely convolution-
based and the decoder is a transformer decoder. 

Diferent from Waveformer, in this work, we use the same dimen-
sionality for both the encoder and decoder. This allowed us to use 
the standard transformer decoder [65], instead of a modifed one 
used in the Waveformer. Waveformer proposes a smaller dimen-
sionality for the decoder block, compared to the rest of the model. 
The transition between diferent dimensionality is achieved using 
projection layers (1D convolution layers with kernel size equal to 1). 
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Figure 6: Binaural target sound extraction network architecture. a) Our high-level binaural extraction framework. Mask 
estimation network is an encoder-decoder architecture operating on latent space representation of binaural signals to extract 
mask for target sound based on the query vector �. b) and c) show the encoder and decoder architectures used in the mask 
estimation network. The encoder processes the previous input context and does not consider the label embedding. Decoder 
frst conditions the encoded representation with the label embedding, � , and then generates the mask corresponding to the 
target sound using the conditioned representation. 

This however breaks the residual paths and the result might afect 
the gradient fowing back, which is mitigated in the Waveformer 
using a long residual connection bypassing the decoder. For our 
binaural application, however, we found that diferent dimension-
ality is not necessarily providing gains warranting the complexity 
of the projection layers and the long residual connection. 
Encoder. Mask estimation in Eq. 3, involves processing many pre-
vious chunks in addition to the current chunk to obtain the mask 
corresponding to the current chunk. Repeated processing of the 
entire receptive feld for each iteration could become intractable 
for a real-time on-device application. To mitigate this inefciency, 
while achieving a large receptive feld, our mask estimation network 
implements a Wavenet [47] style dilated causal convolutions for 
processing the input and previous chunks. In this work, for efcient 
on-device inference, we implemented the dynamic programming al-
gorithm proposed in Fast Wavenet [48]. As shown in Fig. 6b, higher 
efciency is achieved by reusing the intermediate results computed 
in the previous iterations. The encoder function E processes the 
input chunk �� and an encoder context �� to generate the encoded 
representation of the input chunk: 

�� , ��+1 = E(�� , �� ) | �� ∈ �� ×� (5) 

The size of the context �� depends on the hyperparameters of the 
encoder. In our implementation, the encoder is comprised of a stack 
of 10 dilated causal convolution layers. The kernel size of all layers 
is equal to 3, and the dilation factor is progressively doubled after 
each layer starting with 1, resulting in dilation factors {20 , 21 , ..., 29}. 
Since the kernel size is equal to 3, the context needed for each dilated 

convolution layer is twice the layer’s dilation factor. As long as this 
context is saved after each iteration, and padded with the input 
chunk in the next iteration, the intermediate results corresponding 
to the previous chunks do not have to be recomputed. Thus the sizeÍ9of the context �� is equal to 2 × �=0 2

� = 2046. 
Decoder. The query vector � is frst embedded into the embedding 
space using a linear layer to generate a label embedding � ∈ �� . The 
mask corresponding to the target sound �� is estimated using a 
transformer decoder layer [65], represented here as D. The encoded 
representation is frst conditioned with the label embedding � by 
an element-wise multiplication. The encoded representation and 
the conditioned encoded representation are frst concatenated in 
the time dimension, with those from the previous time step, before 
processing with the transformer decoder layer D. The encoded 
representation from the previous time step, �� −1, acts as the decoder 
context. The mask estimation can be written as: 

�� = D({� · �� −1, � · �� }, {�� −1, �� }, ) (6) 

where {} represents concatenation in the time dimension. As 
shown in Fig. 6c, the transformer decoder D frst computes the 
self-attention result of the conditioned encoded representation 
{� · �� −1, � · �� } using the frst multi-head attention block, followed 
by cross-attention between the self-attention result and the un-
conditioned encoded representation {�� −1, �� } using the second 
multi-head attention block. A feed-forward block along with resid-
ual connection generates the fnal mask corresponding to the target 
sound. 
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Table 1: Number of raw audio fles collected for training/testing/validation from each dataset for our potential target classes. 
The total number of mixtures we generate using these for training, testing and validation are 100k, 10k, and 1k, respectively. 

Dataset Alarm clock Baby cry Birds chirping Car horn Cat Rooster crow Typing Cricket Dog Door knock 

FSD50K 
ESC-50 
MUSDB18 
DISCO 
Total 

34/4/4 
24/8/8 
0/0/0 
0/0/0 

58/12/12 

30/8/4 
24/8/8 
0/0/0 

95/53/11 
149/69/23 

65/52/8 
24/8/8 
0/0/0 
0/0/0 

89/60/16 

36/21/4 
24/8/8 
0/0/0 
0/0/0 

60/29/12 

73/39/9 
24/8/8 
0/0/0 
0/0/0 

97/47/17 

23/9/3 
24/8/8 
0/0/0 
0/0/0 

47/17/11 

78/68/9 
24/8/8 
0/0/0 
0/0/0 

102/76/17 

61/14/7 
24/8/8 
0/0/0 
0/0/0 

85/22/15 

109/33/13 
24/8/8 
0/0/0 
0/0/0 

133/41/21 

65/33/8 
24/8/8 
0/0/0 
0/0/0 

89/41/16 

Dataset Glass breaking Gunshot Hammer Music Ocean Singing Siren Speech Thunderstorm Toilet fush 

FSD50k 
ESC-50 
MUSDB18 
DISCO 
Total 

212/31/24 
24/8/8 
0/0/0 
0/0/0 

236/39/32 

169/67/20 
0/0/0 
0/0/0 
0/0/0 

169/67/20 

88/39/10 
0/0/0 
0/0/0 
0/0/0 

88/39/10 

0/0/0 
0/0/0 

581/358/62 
0/0/0 

581/358/62 

86/19/10 
24/8/8 
0/0/0 
0/0/0 

110/27/18 

134/76/19 
0/0/0 

480/291/54 
0/0/0 

614/367/73 

16/5/3 
24/8/8 
0/0/0 
0/0/0 

40/13/11 

494/109/56 
0/0/0 
0/0/0 
0/0/0 

494/109/56 

122/9/14 
24/8/8 
0/0/0 
0/0/0 

146/17/22 

112/21/13 
24/8/8 
0/0/0 
0/0/0 

136/29/21 

3.3 Training for real-world generalization 
We frst describe our audio class dataset curation and then present 
our training methodology to generalize to real-world scenarios. 

3.3.1 Picking audio classes. Our main goal is to create a system 
that efciently handles target sounds encountered in real-world 
situations. By focusing on practical applications, we identify a 
manageable set of target sound classes to extract. However, in 
reality, we come across a wide range of background sounds, many 
of which are not part of our target sound classes. To curate our 
dataset of sound classes, we follow the AudioSet ontology [20], 
which provides a comprehensive and structured representation 
of the relationships between various sound classes. The ontology 
arranges the sound classes as nodes in a graph and groups them into 
seven main sound categories. Each sound class node has a unique 
AudioSet ID and may contain one or more child nodes that represent 
more specifc sound classes. For example, the “Hands” sound class 
has two children, namely “Finger Snapping” and “Clapping.” In 
the rest of this section, we describe how we pick our target sound 
classes as well as the interfering classes. 
• Target sound classes. We frst consider various indoor and 
outdoor scenarios where the system is likely to operate, such as 
beaches, parks, streets, living rooms, ofces, and cafes. Based on 
these scenarios, we identify potential sound sources that are preva-
lent in such locations, such as human speech, dogs, cats, birds, sea 
waves, and music. We then compile a list of sound classes asso-
ciated with these selected target sounds and map each of these 
classes to a label in the AudioSet ontology. We eventually selected 
20 sound classes that we felt human listeners could distinguish with 
reasonably high accuracy. 
• Other sound classes. In the real world, the interfering sounds 
and noise often do not belong to our 20 target sound classes. To 
create a neural network that can generalize to interference from 
these sounds, we need a diverse set of interfering sound classes in 
our dataset.2 However, this poses several challenges. Firstly, these 
sounds can come from a very large variety of sources, making it 
infeasible to exhaustively enumerate all of them. Secondly, since 
we want to use them as interfering signals, we must ensure that 
these sound classes do not overlap with our set of target classes. 
To overcome these constraints, we use the AudioSet hierarchical 

2Note that the target sound classes can also be interfering with each other. 

structure and our set of 20 target classes to generate a large set of 
141 other sound classes. Specifcally, we can defne this set as the 
nodes that are neither a more specifc nor a more general instance 
of any target (or known) class, according to the AudioSet hierarchy. 
In other words, by considering the AudioSet ontology as a directed 
acyclic graph with edges from each sound class node towards its 
child nodes, we defne unknown sound classes as the set of AudioSet 
nodes that are disconnected from all target sound class nodes. 

3.3.2 Audio dataset curation. Given the sets of the target and other 
sound classes, we next obtain labeled audio recordings for each 
of the sound classes. The challenge is that, we cannot rely on 
only a single general-purpose audio-tagging datasets as was done 
in prior single-channel work [66], This is because such datasets 
do not contain audio samples of all 20 target sound classes, and 
may contain a limited number of audio samples from the other 
sound classes. So, we combined audio samples from four diferent 
datasets: FSD50K [18] (general-purpose), ESC-50 [51] (environmen-
tal sounds), MUSDB18 [53] (music and vocals) and noise fles for 
the DISCO [44] dataset (noise sounds). Since each dataset uses 
diferent class names, we standardized the class labels into the Au-
dioSet labels by mapping every class in each dataset to the semanti-
cally closest label in the AudioSet ontology, if any. For FSD50K and 
MUSDB18, we performed additional dataset-specifc pre-processing 
procedures. Specifcally, since our goal is to create binaural mix-
tures of individual sources from multiple directions, we excluded 
audio samples from FSD50K that were already mixtures of multiple 
distinct sound sources. For MUSDB18, we extract and split audio 
into vocal and instrumental streams and assign them the AudioSet 
labels “Singing” and “Melody,” respectively. 

We divide the resulting audio samples into 15 second segments 
and discard all silent ones. We split each dataset into mutually 
exclusive training, testing, and validation sets and then combined 
them into our fnal dataset. For both the FSD50K and MUSDB18, we 
sample the training and validation audio fles from the development 
split (90-10 split), and the testing samples from the evaluation split. 
For the ESC-50 dataset, we use the frst three folds for training, the 
fourth fold for validation and the ffth for testing. For the DISCO 
noise dataset, the audio samples for each sound class is split into 
train, test and validation sets (60-33-7) before combining with the 
rest of the datasets. The fnal combined dataset consists of 20 target 
classes, distributed as shown in Table 1 and 141 other sound classes. 
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3.3.3 Binaural data synthesis. The procedure above describes how 
we sample single channel sound classes from various audio datasets. 
However, our goal is to create binaural mixtures that (1) are repre-
sentative of spatial sounds perceived by a diverse set of listeners, 
and (2) capture the idiosyncrasies of real world reverberant environ-
ments. For this purpose, we use a pre-existing dataset of 43 human 
head-related transfer function (HRTF) measurements (CIPIC [8]) to 
address the frst challenge. We also augment this with three datasets 
of measured (SBSBRIR [57], RRBRIR [26]) and simulated (CATT 
RIR [27]) reverberant binaural room impulse responses (BRIRs) to 
address the second requirement. We split each dataset across rooms 
and listeners into train, test and validation (70-20-10) sets. We en-
sure that no BRIR subjects or rooms are sampled across diferent 
sets. For each sample during training, we randomly choose one 
of the datasets and sample a single room and participant from its 
training set. Then, to create a binaural mixture with � sources, we 
independently pick a source direction for each of the � sources, 
out of all source directions available for this room and this partici-
pant subject in the dataset. Note that since the source directions 
are independently picked, two diferent sound sources might end 
up being at the same direction from the wearer. We then obtain 
a set of 2� room impulse responses ℎ1,�, ℎ1,�, ℎ2,�, . . . , ℎ�,� ∈ R� , 
where � is the length of the room impulse response. Hence, for a 
training sample with input audio signals of length � samples long, 
denoted by �1, �2, . . . , �� ∈ R� , we can compute the sound receivedÍ� at the left and right ears, �� and �� as, �� = =1 �� ∗ ℎ�,� and� Í� �� = 

�=1 �� ∗ ℎ�,� . Here ‘∗’ represents the convolution operation. 
The synthesized binaural audio mixtures are sampled at 44.1 kHz. If 
room impulse response in our HRTF dataset has a diferent sampling 
rate, we resample the signal before and after convolving. 

3.3.4 Training procedure. We used the Scaper toolkit [56] to syn-
thesize binaural mixtures dynamically on the fy during training. 
For training and validation, our binaural mixtures consist of two 
randomly picked target classes, each with an 5-15 dB SNR relative 
to the background sounds, and 1-2 other classes that each have a 
0-5 dB SNR relative to the background sounds. We also use back-
ground sounds sourced from the TAU Urban Acoustic Scenes 2019 
dataset [42] in our mixtures. Each mixture is 6 seconds long. Sounds 
from the target and other background classes are between 3 to 5 
seconds long, while background urban sounds persist for the entire 
duration of the mixture. In addition to the mixture, we also synthe-
size ground truth signals �� and �� , respectively at the left and right 
channels, for each chosen target sound source � as, �� = �� ∗ ℎ�,� 
and �� = �� ∗ ℎ�,� . 

The network is then trained to produce a pair of left and right 
channel target sound estimates �̂� and �̂� . To preserve the spatial 
cues, such as interaural time diferences (ITD) and interaural level 
diferences (ILD), we use the sample-sensitive and scale-sensitive 
signal-to-noise ratio (SNR) loss function, applied independently 
and then average the left and right SNRs to obtain the loss function: � � 

| |� | |2 
���( ̂  = 10 log �, �) 

| |� − �̂ | |2 � �
1 1 

� = − 
2
�� �(�̂�, ��) + 

2
���(�̂�, �� ) . 

Figure 7: A participant in our in-the-wild evaluation where 
the target sound was birds chirping in the presence of urban 
environment noises. The participants could move their head 
freely and the target sound source could also be mobile. 

Finally, we train our transformer model for 80 epochs, with an 
initial learning rate of 5e-4. After completing 40 epochs, we halve 
the learning rate if there is no improvement in the validation SNR 
for more than fve epochs. We emphasize here that the training 
data do not include any measurements with our binaural hardware 
and the results we report in this paper evaluate generalization to 
our hardware, unseen users and environments. 

4 RESULTS 
We frst describe our setup for real-world evaluations and then 
present our binaural network benchmarks. 
Hardware prototype. Our hardware setup includes a pair of 
SonicPresence SP15C binaural microphones that are wired to cap-
ture high-quality recordings. We use an iPhone 12 to process the 
recorded data and output the audio through noise-canceling head-
phones like JBL Live 650BTNC and the NUBWO gaming headsets. 
We use a lightning-to-aux adapter to connect the headphones to 
the iPhone over a wire. We also use a USB hub to connect both the 
microphones and the headphones to the smartphone. 
Participants. We recruiting 9 individuals (3 female, 6 male) across 
our in-the-wild and spatial cues evaluations. We also invited 22 
participants (6 female, 16 male) for our online hearing study. 

4.1 In-the-wild evaluation 
To evaluate the proposed system in real-life scenarios, we conduct 
in-the-wild experiments to assess the efectiveness of our system. 

In-the-wild scenarios. 5 individuals (3 female and 2 male) wore 
our hardware and collect sounds in the real world. These experi-
ments were conducted in typical application settings: ofces, living 
rooms, streets, rooftops, parks, and restrooms. Since some of the 
sound classes were relatively less common, our in-the-wild experi-
ments had a subset of classes which most commonly appeared in 
our recordings: alarm clock, car horn, door knock, speech, com-
puter typing, hammer, birds chirping, and music. The position and 
movement of the sound sources were uncontrolled and refective 
of real-world scenarios, where the sound sources could be mobile. 
Furthermore, in all experiments, participants had complete freedom 
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Figure 8: In-the-wild evaluation results for (a) mean opinion 
score (MOS) and (b) noise suppression across various classes 
that occurred in real-world data collection. 

to move their heads, causing the sound source positions relative to 
the microphones to vary over time (Fig. 7). Thus, our in-the-wild 
evaluation captured both mobile wearers as well as mobile sound 
sources that naturally occured in real-world scenarios (e.g., cars 
moving or birds that fy). 

Evaluation procedure. Unlike with our simulated training data, 
we do not have clean, sample-aligned ground truth signals to objec-
tively compare the binaural outputs of our system with. Hence, we 
conduct a listening study to compute a mean opinion score (MOS) 
regarding the sound extraction accuracy. This metric is crucial 
to evaluate the perceptual quality of our algorithm for end-users, 
although it has often been omitted in prior non-speech sound ex-
traction research. We invited 22 participants (6 female, 16 male, 
mean age 34.6) to the online listening study. The study consists of 
16 sections. In each section, the participants evaluated the quality 
of 3 or 4 5.0-8.5 second audio samples. The audio samples played at 
each section were in-the-wild recordings processed in the following 
three ways for the same target label: (1) the original recording, (2) 
the output of our 128-dimensional binaural network, (3) the output 
of our 256-dimensional binaural network. For the subset of the eval-
uations that involved speech as the target sound, we also included 
an additional fourth audio sample that was obtained by extracting 
of the interfering class (e.g., door knocks) and then subtracting it 
from the input recording to estimate the target speech. 

We conducted a pre-screening process to ensure that the par-
ticipants used suitable binaural headsets. This involved playing 
two white noise samples, one exclusively from the left channel 
and one exclusively from the right channel. The participants were 
instructed to confrm that they heard the sounds only from the 
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(a) Binaural input of door knock in the presence of toilet fush. 

0.2

0.0

0.2

0.4

Left

0.2

0.0

0.2

0.4

Right

(b) Binaural output with door knock extracted. 

Figure 9: Qualitative result with a real-world recording. 

correct channels. 11 of our participants used headphones, and 11 
used earbuds during our online user study. 

We measured the sound extraction quality based on both inter-
ference suppression and overall mean opinion score (MOS), as they 
are often included in speech enhancement quality assessment: 

(1) Noise suppression: How INTRUSIVE/NOTICEABLE were the 
BACKGROUND sounds? 1 - Very intrusive, 2 - Somewhat in-
trusive, 3 - Noticeable, but not intrusive, 4 - Slightly noticeable, 
5 - Not noticeable 

(2) Overall MOS: If the goal is to focus on the <TARGET> sounds, 
how was your OVERALL experience? 1 - Bad, 2 - Poor, 3 - Fair, 
4 - Good, 5 - Excellent 

Results. In Fig. 8, we present the results of the user evalua-
tions for the interference sound suppression and overall quality 
improvement of our system for diferent target sound labels. The 
results demonstrate the system’s capability to signifcantly reduce 
unwanted background sounds, as indicated by an increase in the 
overall noise suppression score from 2.01 (corresponding to 2 -
Somewhat intrusive) to 3.61 (between 3 - Noticeable, but not intru-
sive and 4 - Slightly noticeable) with the 128-dimensional model, 
and to 3.84 (slightly worse than 4 - Slightly noticeable) with the 256-
dimensional model. We also observed a similar trend in the overall 
MOS improvement, with an improvement from 2.63 for the input 
signal to 3.54 and 3.80 after processing with the 128-dimensional 
and 256-dimensional models, respectively. Figs. 3d and 9 also show 
that our network preserves the timing of the target sounds and can 
silence out noise outside the target sound duration. 

The results also ofer interesting insights at a per-class level. 
In general, the 128-channel model performs only slightly worse 
than the 256-channel model for almost all classes, except for the 
“Computer typing” class, where the gap in the overall MOS between 
the two models is almost 0.84 MOS points. This is likely due to a 
particularly noisy recording taken near a running generator, where 
the 128-channel model created faint, unpleasant artifacts that were 
not observed with the 256-channel model. However, both models 
performed poorly in the “Hammer” class, where the target hammer 
sound was recorded in the presence of interfering music. Although 
the network correctly silenced the time segments that did not con-
tain the hammer sounds, there was a noticeable residue from the 
music when there was a hammer sound, which the listeners found 
intrusive. Another important fnding from the study is the signif-
cant improvement obtained by removing interfering signals from 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Veluri, Itani, Chan, Yoshioka and Gollakota 

0.5

0.0

0.5 Left

0.5

0.0

0.5 Right

(a) Binaural input of speech recorded with door knock 

(b) Binaural output with speech extracted 
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(c) Binaural output with door knock removed 

Figure 10: Extracting speech as a target here causes momen-
tary periods of excessive signal attenuation (highlighted in b) 
as the network tries to remove door knocks and background 
sounds. However, if we extract and then subtract door knock 
sounds, the background noise is still faintly present, and the 
resulting signal sounds less harsh. 

the input recording when the target is speech. By removing short-
length sounds such as door knocks from the recorded signal instead 
of extracting the speech directly (see Fig. 10), we were able to in-
crease the overall MOS by 0.91 points. Finally, it’s worth noting that 
these in-the-wild results were obtained from the models trained 
solely on synthesized data, without any training on data collected 
from our hardware or for the participants. 

4.2 Evaluating user-perceived spatial cues 
We present experiments conducted in fve ordinary, reverberant 
rooms to evaluate the ability of our design to preserve or recover 
user-perceived spatial cues. As with the in-the-wild evaluation, our 
training data had no samples either from our hardware or the tested 
real-world environments. 

Data collection. We collected real-world audio recordings of 
our target sounds from known directions. To achieve this, fve par-
ticipants (3 male, 2 female) were ftted with binaural microphones 
and seated on a rotating chair positioned at the center of a large, 
printed semicircular protractor measuring 70 × 36 inches, as shown 
in Fig. 11. The protractor was lined at regular 22.5◦ intervals (nine 
lines total) for precise rotational measurement. A Sony SRS-XB10 
loudspeaker was placed on a fxed tripod at the 90◦ line of the 
protractor to emit diferent sound signals. To control the angle-of-
arrival of the sound signal relative to the listener, the participants 
were asked to rotate the chair and align themselves with one of the 
protractor’s lines. 

The data was collected in 9 stages. In each stage, the user is 
rotated towards a diferent angle. The frst stage starts with the 
participant facing the 180◦ line. After completion of each stage, the 
participant rotates 22.5◦ clockwise to the next marked angle. At 

Figure 11: Spatial cue evaluation. (left) the evaluation setup, 
and (right) the CDF of the error between the ground truth 
source direction and the user-perceived source direction af-
ter listening to the isolated clean target sounds as well as 
network output binaural target sounds. The dashed lines are 
interpolated CDFs used to compute the interpolated median 
and 90th percentile error. 

each stage, the loudspeaker plays four 5-second audio samples: (1) 
white noise, (2-3) two test samples belonging to the target sound 
classes, and (4) a test sample belonging to the interfering other 
sound classes. Across all stages of data collection, the chosen audio 
samples comprise exactly 9 test samples from 9 distinct interfering 
other sound classes and 6 test samples from 6 distinct target sound 
classes. Notably, each test sample from the target classes is recorded 
for 3 diferent relative angles. 

Evaluation procedure. Since our goal is to develop a system 
that accurately preserves the spatial cues perceived by human lis-
teners, we design a user study to compute the perceived angle-of-
arrival for the target binaural sounds output by our system. To 
this end, based on the collected audio recordings, we frst create 
sound mixtures by sampling two audio clips from the target classes, 
and 1-2 clips from the interfering other classes. The mixtures are 
generated using Scaper. We choose the reference loudness of the 
background to be -50 LUFS, and we set the SNR of the target class 
sounds to 15-25 dB and that of the interfering other class sounds to 
0-10 dB. We process each mixture by choosing a target class and 
running the mixture through our network. 

We play the recordings of the individual clean target sounds with 
no interference, as well as the network output samples estimating 
these target sounds from the created mixtures, to the same set of 
participants via a pair of binaural earphones. Since the perceived 
spatial cues rely heavily on anthropometric features, all the sound 
signals played to a given participant originated from the binaural 
data obtained from that same participant in the data collection step. 
Prior to listening to each sample, participants are informed of the 
target class they should be localizing. After listening, they are asked 
to predict the direction of the sound source. To prevent the partici-
pants from associating each output sample with its corresponding 
individually-recorded target sound, the samples are played in a 
random order. To help the participants establish an orientation ref-
erence, we play back the white noise samples for each angle in the 
increasing order at the start of the evaluation. Additionally, in cases 
of uncertainty between two specifc source angles, the participants 
are allowed to re-listen to the white noise samples recorded for 
these angles. The study lasted around 20 minutes per user. 
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(c) Sound recorded inside the headphone cups. 

Figure 12: Spectrograms of binaural recordings showing re-
sults from our end-to-end experiment with a wearable head-
set. Here, we extract door knock sounds in an environment 
with a nearby active vacuum cleaner. 

Results. We compare the errors between the ground truth source 
directions and the users’ perceived arrival directions obtained for 
both the clean interference-free target sound recordings as well as 
the binaural target sound signals generated by our system for the 
mixture signal input. Our fndings, as illustrated in Fig. 11, show 
that the mean angle error slightly increases from 18◦ to 23.25◦. Ad-
ditionally, we observe that the interpolated 50th and 90th percentile 
errors also increase marginally from 5◦ to 9◦ and from 38◦ to 42◦, 
respectively. This demonstrates that our model preserves the spatial 
cues of the target sounds in its output and has a negligible impact 
on how users perceive the source directions. 

4.3 Integration with noise canceling headsets 
So far, we have treated semantic hearing and active noise can-
cellation as two separate systems that function independently. In 
practice, however, the end-to-end system requires a few additional 
considerations. Firstly, many active noise cancellation systems rely 
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on a recorded signal inside the ear cup to adaptively silence the 
noise signals and achieve adaptive noise cancelation. Hence, the 
audio we play back to perform semantic hearing may infuence 
the noise cancellation algorithm. Secondly, active noise cancella-
tion systems are not perfect, and they may still let some sounds 
through. To address these concerns, we record data while a user 
is utilizing our end-to-end system in real time. The user wears a 
pair of Sony WH-1000XM4 headphones with active noise cancella-
tion enabled. In addition to the outer microphones used to capture 
external sounds to process, they also wear binaural microphones 
inside the earcups to record the sound produced by the active noise 
cancellation and semantic hearing systems together, i.e. as heard 
by the user. The user chooses to listen to the sound of door knocks 
as a vacuum cleaner is turned on nearby. For this experiment alone, 
we run our semantic hearing algorithm on the audio recorded from 
the outer microphones on a laptop with an Intel Core i5 CPU. The 
processed audio is played back through the headphones. 

Fig. 12(a)-(c) shows the spectrograms for three binaural signals: 
the signal recorded at the outer microphone, the signal played 
through the headphones, and the signal recorded inside the earcups. 
We demonstrate that while the recordings from the inside earcups 
are slightly noisier, we clearly see that the system can suppress the 
unwanted sounds (vacuum cleaner), while preserving the target 
sounds (door knocks). This demonstrates the feasibility that such a 
system can coexist with active noise cancellation systems. We note 
that to mitigate residual noises, the semantic hearing subsystem 
may have to integrate the residual audio from noise cancelling 
headphones to adapt the playback signal to the residual noise as 
well. However, this comes with stricter latency requirements and 
thus we leave it for future work. 

4.4 Benchmarking the neural network 
In-the-wild evaluation with human evaluators is closest to real-
world use. It is however hard to objectively compare diferent mod-
els due to the lack of ground-truth signals, as well as due to the 
challenges in obtaining a large amount of test data necessary for 
the statistical signifcance of smaller performance gaps. To address 
these practical limitations, we also evaluate our model on an ex-
tensive reverberant binaural testset comprising 10000 mixture and 
ground-truth pairs. We synthesized the benchmarking dataset to 
mimic real-world situations following the approach in §3.3. 

To evaluate the performance of our binaural extraction model, as 
shown in Table 2, we compare the following three binaural target 
sound extraction frameworks. 
• Dual-ch. This is the dual-channel architecture we proposed in 
§3.2.1 for efcient binaural target sound extraction. In this frame-
work, the binaural signal is converted into a combined latent space 
representation before the mask estimation. Since both left and right 
channels are combined into a common representation, a single in-
stance of the mask estimation network is used for estimating the 
mask corresponding to the target sound. We consider our mask 
estimation architecture with both � = 128 and � = 256. 
• Parallel. This is the binaural framework proposed in [25] that 
implements parallel processing of the left and right channels, along 
with some cross-communication between channels. The binaural 
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Table 2: Performance and efciency comparison of diferent binaural target sound extraction frameworks and mask estimation 
architectures on a large test dataset across 20 target classes generated using the approach described in §3.3. 

Binaural framework Mask estimator Params (M) SI-SNRi (dB) ΔITD (��) ΔILD (dB) Runtime (ms) 

Dual-ch Ours (� = 128) 
Ours (� = 256) 

0.52 
1.74 

7.17 
7.41 

87.77 
85.16 

0.88 
0.87 

6.56 
12.54 

Parallel Ours (� = 128) 
Conv-TasNet 

0.86 
2.33 

7.24 
4.43 

81.72 
670.05 

1.08 
-

13.35 
15.58 

Single-ch Ours (� = 256) 
Vanilla Waveformer (� = 256) [66] 

1.68 
1.69 

7.43 
7.37 

79.70 
85.33 

1.32 
1.27 

22.19 
25.85 

framework in [25] is originally proposed for binaural speech separa-
tion. We implemented this framework for both our mask estimation 
network with � = 128 and Conv-TasNet [38]. We include Conv-
TasNet as it is one of the most widely used signal enhancement 
model architectures. We choose a confguration of Conv-TasNet 
that resulted in similar runtime to that of our model and trained 
both models with our training dataset. 
• Single-ch. In addition to the above two binaural extraction 
frameworks, we also evaluate and compare the performance with a 
single-channel extraction baseline. Since the target sound extrac-
tion models we consider are sample-aligned, models trained with 
monaural inputs and outputs can be independently applied to the 
left and right channels. Similar to the Parallel case, this also in-
volves two instances of the mask estimation network. However, by 
contrast, the model parameters applied to the left and right chan-
nels are the same and there is no cross-communication between 
the channels. We implement the best confguration of our model 
(� = 256) so that this serves as a strong baseline. 

For each model, we compare the performance in terms of the 
signal quality, the accuracy in spatial cues, and the on-device run-
time requirement. We measure the signal quality using the scale-
invariant signal-to-noise-ratio [54] improvement (SI-SNRi) of the 
output compared to that of the mixture, computed with respect 
to the ground-truth. The SI-SNRi results are averaged over the 
entire testset, across the left and right channels. Following [25], 
the spatial cue accuracy is measured using the diference in the 
interaural time diferences (ITDs) and interaural level diferences 
(ILDs) between the output binaural signal and the ground-truth 
binaural signal, denoted as ΔITD and ΔILD. We compute ITD using 
cross-correlation, limiting them to ±1 ms, as was done in [40]. The 
model runtimes are measured on iPhone 11, by converting them to 
ONNX format [9] and then executing them using ONNX Runtime 
for iOS. The runtimes are measured for computing a 10 ms output 
chunk averaged over 100 runs. Therefore, the runtime must be less 
than 10 ms for deployment, which our dual-channel model with 
� = 128 meets. 

In our experiments, we observed that the causal Conv-TasNet 
converges to the local minima of generating a constant zero signal 
when trained only with the SNR loss. This phenomenon is also 
observed in [66], which suggested training Conv-TasNet with 90% 
SNR + 10% SI-SNR loss. The likely cause for this is, unlike the speech 
datasets that Conv-TasNet is originally designed for, sound datasets 
have a signifcant amount of silence, causing the Conv-TasNet 

optimization process to converge to generating a zero signal. On 
the other hand, using a loss of 90% SNR + 10% SI-SNR in the binaural 
case, caused one of the channels to output a very low-amplitude 
signal relative to the other channel as SI-SNR is insensitive to the 
signal gains. We confrmed that the signal is spectrally meaningful 
even though the magnitude is wrong. As a result, only SI-SNRi 
and ΔITD results are meaningful for the Conv-TasNet model. ΔILD 
computation resulted in infnity, so we omit it in our table. 

In Table. 2, we observe that the dual-channel framework is com-
petitive with the parallel and single-channel frameworks in terms 
of SI-SNRi, while outperforming in ΔILD. With regard to ΔITD, 
it resulted in a very marginal increase. These results intuitively 
make sense because the dual-channel framework has a sample-
aligned common representation for both left and right channels. 
As a result, it can maintain the relative amplitudes of the left and 
right channels. On the other hand, the parallel and single-channel 
frameworks have separate branches that independently process 
diferent channels, facilitating maintaining the sample alignment 
with the respective channels. This phenomenon is more notable for 
the single-channel framework, where the SI-SNRi and ΔITD are 
promising but the ΔILD is poor, as there is no cross-communication 
between the left and right channel processings. Finally, we note 
that our dual-channel framework requires only a little more than 
50% of the runtime required by their parallel or single-channel 
counterparts, making it a good practical choice for our semantic 
hearing system. Finally, we note that our dual-channel framework 
uses 240 MFLOPS, while vanilla Waveformer uses 357 MFLOPS 
across the two microphones. 

For our causal model, the receptive feld is exclusively the past 
audio. Hence, it has no efect on the algorithmic latency. The al-
gorithmic latency of our model is the sum of chunk size, ��, and 
the lookahead of the input convolution, �, where � is the stride of 
the input convolution (§3.2.2). Table 2 uses stride � = 32 samples 
and � = 13, resulting in a chunk size of �� = 416 samples and 
lookahead � = 32 samples. This is equivalent to 9.4 ms and 0.7 ms, 
respectively. Table 3 shows the performance of our binaural model 
with various chunk sizes to understand the efect of algorithmic 
latency on performance. The results show that our model achieves 
reasonable performance with an algorithmic latency as low as 1.4 
ms. Thus with ASIC implementations, such as those in hearing aids, 
we could envision ultra-low-latency semantic hearing systems. 

During our in-the-wild evaluations, users freely moved their 
heads and encountered mobile sources (eg. sirens). The model also 
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Table 3: Efect of algorithmic latency on the performance. 
*Proposed system with end-to-end latency ∼20 ms. 

Chunk size (samples) Algorithmic latency (ms) SI-SNRi (dB) 

32 1.4 6.59 
128 3.6 6.83 
256 6.5 7.18 
416* 10.1 7.42 

Table 4: Comparison of performance in the presence of rel-
ative angular motion between listener and sound sources. 
Dual-ch model with � = 256 is used for this evaluation. 

Angular Reverb. SI-SNRi (dB) ΔITD (�s) ΔILD (dB) 
velocity (◦/s) 

30 No 7.95 34.26 0.58 
Yes 7.88 103.45 0.43 

60 No 7.91 49.49 0.57 
Yes 7.98 98.23 0.49 

90 No 7.87 58.67 0.54 
Yes 8.00 99.83 0.43 

performed robustly without glitches during evaluations by human 
testers. The model adapted quickly to relative motion because it 
outputs small chunks (<10ms) while updating its internal state. The 
model can also utilize spatial positions in the trajectory that have 
better level diferences between L and R channels. In addition to that 
qualitative evaluation, Table 4 provides a quantitative comparison 
of the performance for diferent amounts of relative angular motion 
between the listener and sound sources. For this comparison, we use 
the dual-ch model with � = 256 dimensions. We simulate motion 
using Steam Audio SDK [7], which simulates binaural motion given 
an HRTF fle in the SimpleFreeFieldHRIR format [6]. We performed 
controlled experiments with diferent angular velocities in both ane-
choic and reverberant environments, with sources moving from a 
random position on an arc with the given angular velocity. We used 
the CIPIC [8] HRTF dataset for anechoic simulations and RRBRIR 
[26] BRIR dataset for reverberant simulations as they provide im-
pulse responses in the SimpleFreeFieldHRIR format. We synthesize 
the binaural audio in frames of 1024 samples by convolving with an 
interpolated impulse response using bilinear interpolation at every 
frame. Since the ILD and ITD are now time-varying, we compute 
the ΔILD and ΔITD in chunks of 250 ms, discarding any chunks 
where the clean signal is silent on both channels, and take the mean 
across the remaining chunks. We observed that in the presence of 
motion, SI-SNRi and ΔILD are marginally better as the model is 
able to better leverage the level diferences between L and R at dif-
ferent relative angular positions while achieving lower ΔITD in the 
anechoic case and slightly higher ΔITD in reverberant scenarios. 

4.5 Proof-of-concept user interface 
Finally, a natural question is: how does the user pick between 
classes? To answer this question, we prototyped an iOS app with 
three diferent user interfaces for sound selection: Speech, Text and 
Toggle switch grid of sounds (Fig. 13), and evaluated their accuracy, 
speed, and ease of use. 
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Figure 13: User interface designs for target sound selection 
on a smartphone. Each design uses a diferent input method 
to capture the user’s intent: (left to right) speech, text and 
toggle switches. The frst two interfaces use ChatGPT API to 
convert natural language to class inputs for our system. 

For the speech and text interfaces, our goal was to investigate if 
the ChatGPT API for phones [4] could be used to convert natural 
language (I want to listen to ambulance sounds) into known sound 
class inputs to our system (siren+). To do this, we initialized Chat-
GPT using the prompt: Here is a list of sound classes: [‘alarm_clock’, 
‘baby_cry’, [...] I will provide you a sentence that involves keeping or 
removing one of these sound classes. I want you to output the sound 
class from the list that most closely matches (semantically) the sounds 
in the sentence. If there are no classes that are sufciently close, output 
‘na’. Please do not output any other characters. If you fnd a close class 
and if the sentence involves keeping sound from this label, append a 
‘+’ to your output, otherwise, append ‘-’. For example, if I say ‘mute 
cat’ you should say ‘cat-’. If I say ‘mute cow’ you should say ‘na’. 

Ten participants were presented each of them with ten scenes 
of the following form: Your infant’s cries break the silence. Your 
phone plays a melody. The rustle of the wind is audible. We asked 
participants to select a single sound event to add or remove, and 
convey their intent to the app with the three user interfaces (UIs). 
To evaluate the accuracy of each interface, we compared the sound 
event selected through each UI with our best interpretation of what 
the user said. Agreement rates were 92% for Speech and Text, and 
93% for Toggle switch. For Speech and Text, disagreement was 
due to confusion by ChatGPT (e.g. The toilet is too loud mapped to 
toilet_fush+), or when ChatGPT would map selected sounds not in 
the dataset to a similar sound in the dataset (e.g. wind and fountain 
sounds were mapped to ocean). For the Toggle switch, disagreement 
occurred when the intended sound class could not be found. 

The mean time taken to convey intent was shortest for Speech 
(5.5 ± 1.0s), then Toggle (6.3 ± 3.3s) and longest for Text (8.3 ± 3.7s). 
Preference ratings (1=very unlikely, 5=very likely) were highest 
for Speech (4.0 ± 1.1), then Text (2.9 ± 1.2), and lowest for Toggle 
(2.7 ± 1.4). These fndings suggest that from an user interface per-
spective, Speech would be a practical interface choice and would 
scale better than the Toggle interface as the number of supported 
classes increases. One participant noted that they would prefer the 
Text interface when using the system in a public setting even if it 
took a longer time to input their intent. 
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5 LIMITATIONS AND DISCUSSION 
As shown in Table. 1, we have an imbalance in the number of exam-
ples across classes. For instance, the “speech” class has 494 training 
examples, while “car horn” has only 60 training examples. Collect-
ing more examples across all classes can potentially improve the 
performance. Finally, some classes may be inherently harder to 
separate. For example, music and human speech share many char-
acteristics, including vocal sounds and harmonicity. Thus, despite 
having a larger number of training examples, it is difcult for our 
model to perform tasks such as separating the speech of the person 
around the wearer in the presence of background music that also 
has vocals. Similarly, it can be challenging to separate music from 
other classes like alarm clock sounds or bird chirping. Additionally, 
our training methodology does not utilize any real-world data with 
our hardware. Nevertheless, our real-world testing results demon-
strate the generalization capabilities to our hearable hardware as 
well as unseen real-world environments. However, it is still possible 
that collecting training data in the real-world scenarios as well as 
with actual hardware can help improve the system performance. 

Another limitation is the form factor of the hearable hardware 
we used in our evaluations where we used binaural earphones in 
addition to a noise canceling headset. The form factor could be 
simplifed if we used a single device for recording and playback. 
Currently, there are commercial noise cancelling headsets that 
provide user access to the microphone data, such as the Sennheiser 
AMBEO Smart Headset, which we found after our evaluations. Our 
system implemented on such a device would have fewer wires and 
would directly connect to the smartphone at a single point, without 
the need for an additional pair of binaural earphones. 

Binaural target sound extraction can also be used to subtract 
the target sounds and play the residual sounds into the ear. Fig. 10 
shows the results for subtracting a target sound (e.g., computer 
typing or hammer) to focus on the human speech. This can be 
benefcial when the user knows the specifc type of environmental 
noise that they feel annoying (e.g., computer typing in an ofce 
room) as this approach would remove only the specifed noise and 
thus allow the user to focus on the speech and the other sounds in 
the environment. 

For proof-of-concept demonstration, we have implemented our 
neural network on a connected smartphone. While wired head-
sets connected to the smartphones are an important use case for 
practical applications and can beneft from our implementation, 
extending our system to wireless headsets requires integrating com-
putation with the headset hardware itself. This is likely feasible 
given the ultra-low power multicore embedded GPUs that are being 
designed for wearable devices [5]. Further, with recent develop-
ments in custom silicon for on-chip deep learning for speech and 
natural language processing [62], it is likely that commercial hear-
able devices for semantic hearing would use such custom silicon 
to reduce both the power consumption of the wearable device and 
the end-to-end latency. 

6 CONCLUSION 
This paper takes an important frst step towards realizing real-time 
programming of acoustic scenes on binaural hearable devices using 
the semantic description of sounds. At its core are two key technical 
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contributions: 1) the frst binaural target sound extraction neural 
network. Our network can run in real-time, using 10 ms or less 
of audio blocks, while preserving the spatial information, and 2) 
a training methodology that allows our system to generalize to 
unseen real-world environments. In-the-wild experiments with 
participants show that our proof-of-concept hardware-software 
system can preserve the directions of the target sounds and separate 
these sounds in real-time from both the background noise and other 
sounds in the environment. 
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